1. Consider the field $\mathbb{Z}_{17}=\mathbb{Z} /(17)$.
(a) Find the reciprocals $1^{-1}, 2^{-1}, \ldots, 16^{-1} \in \mathbb{Z}_{17}$.
(b) Make a table of squares in \mathbb{Z}_{17} in reduced form (e.g. $6^{2}=36=2$, so $\sqrt{2}=6 \in \mathbb{Z}_{17}$. Explain the symmetry of this table: it begins $1,4,9, \ldots$, and ends $\ldots, 9,4,1$.
(c) Solve the equation $2 x^{2}+4 x+1=0$ for $x \in \mathbb{Z}_{17}$.
2. A field K with 8 elements
(a) Construct such a field K as an extension field of \mathbb{Z}_{2}. Take an irreducible polyomial $p(x)$ of degree 3 , and let $K=\mathbb{Z}_{2} /(p(x))$. Write the 8 elements as standard forms in the compact notation (α instead of $[x]$, no brackets on coefficients).
(b) Find the reciprocal of each element in K.
(c) Factor $p(y)$ completely into linear factors in $K[y]$, allowing coefficients in K. Hint: One root of $p(y)$ is $y=\alpha$. Check that $y=\alpha^{2}$ is another root.
3. It is difficult to write down a real solution to $x^{3}+x+1=0$. Assuming α is such a solution, consider the ring:

$$
K=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n} \text { for } a_{i} \in \mathbb{Q}, n \geq 0\right\}
$$

(a) Consider the homomorphism $\phi: \mathbb{Q}[x] \rightarrow K$ given by $\phi(f(x))=f(\alpha)$. Find the kernel of ϕ. Hint: It is clear that $p(x)=x^{3}+x+1 \in \operatorname{Ker}(\phi)$, so the principal ideal $(p(x)) \subset \operatorname{Ker}(\phi)$. Now note that $p(x)$ is irreducible in $\mathbb{Q}[x]$, so $(p(x))$ is a maximal ideal. Could there be any more elements of $\operatorname{Ker}(\phi)$?
(b) Use a theorem to that conclude that $K \cong \mathbb{Q}[x] /\left(x^{3}+x+1\right)$, and that K is a field.
(c) Assuming part (b), show that any element of K can be written in the form $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$.
(d) Find the reciprocal $\frac{1}{\beta}=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}$ of the element $\beta=1+\alpha^{2}$ by the Euclidean Algorithm applied to $x^{2}+1$ and $x^{3}+x+1$.

